Exercise 14

Use the method of undetermined coefficients to find the general solution for the following second order ODEs:

$$
u^{\prime \prime}+u=3
$$

Solution

This is an inhomogeneous ODE, so the general solution is the sum of the complementary and particular solutions.

$$
u=u_{c}+u_{p}
$$

The complementary solution is the solution to the associated homogeneous equation,

$$
u_{c}^{\prime \prime}+u_{c}=0 .
$$

This is a linear ODE with constant coefficients, so the solution will be of the form $u_{c}=e^{r x}$.

$$
u_{c}=e^{r x} \quad \rightarrow \quad u_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad u_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}+e^{r x}=0 .
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+1=0
$$

Factor the left side.

$$
(r+i)(r-i)=0
$$

$r=-i$ or $r=i$, so the complementary solution is

$$
u_{c}(x)=C_{1} e^{-i x}+C_{2} e^{i x} .
$$

We can write this in terms of sine and cosine by Euler's formula.

$$
u_{c}(x)=A \cos x+B \sin x
$$

Now we turn our attention to the particular solution. Because the inhomogeneous term, 3, is a constant, the particular solution should be chosen so that the higher derivatives vanish but the smallest derivative remains, i.e. $u_{p}=C$. Plugging this form into the ODE yields $C=3$. Thus, $u_{p}=3$. Therefore, the general solution to the ODE is

$$
u(x)=A \cos x+B \sin x+3 .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =-A \sin x+B \cos x \\
u^{\prime \prime} & =-A \cos x-B \sin x .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}+u=-A \cos x-B \sin x+A \cos x+B \sin x+3=3,
$$

which means this is the correct solution.

